
1 Spectra 0.1.5 – August 2009

 _____ _____ ______ _____ _______ _____
 / ____| __ \| ____/ ____|__ __| __ \ /\
 | (___ | |__) | |__ | | | | | |__) | / \
 ___ \| ___/| __|| | | | | _ / / /\ \
 ____) | | | |___| |____ | | | | \ \ / ____ \
 |_____/|_| |___________| |_| |_| _\/_/ _\

by Retroclouds

TMS9900 Arcade Game Library

for the

Texas Instruments TI-99/4A

REFERENCE MANUAL

August 2009

version 0.1.5

2 Spectra 0.1.5 – August 2009

REVISION

Date Author Revision
August 1st 2009 Filip Van Vooren

(Retroclouds)
Initial version
SPECTRA version 0.1.5 (“Small Fish”)

3 Spectra 0.1.5 – August 2009

TABLE OF CONTENTS

Introduction ... 7

What I need to know...8
License ..8
License EPSGMOD player ...8
How it all started ...9
Compatibility ...9
Serviceable parts inside ...10
Graphics ...10
Sound ..10

Base .. 11

What I need to know...12
Required files ..12
Stack ..13
Memory layout ..14
Variables in block 2 ...15

POPRG(0-9) ..16
Pop registers & return to caller...16

POPRX(0-9)...17
Pop registers & return to caller (R11 already set) ...17

FILMEM ..19
Fill RAM memory range with byte ..19

FILMEX ..20
Fill RAM memory range with byte (register variant) ..20

CPYM..21
Copy ROM/RAM memory range ..21

CPYMX ...22
Copy ROM/RAM memory range (register variant) ..22

G2VDP..23
Copy GROM memory range to VDP memory..23

G2VDPX ...24
Copy GROM memory range to VDP memory (register variant)..24

G2MEM ..25
Copy GROM memory range to RAM memory ...25

G2MEMX ..26
Copy GROM memory range to RAM memory (register variant) ...26

4 Spectra 0.1.5 – August 2009

VDP low-level.. 27

FVRAM ...28
Fill VDP memory with byte..28

FVRAMX ..29
Fill VDP memory with byte (register variant)..29

PVRAM...30
Copy memory range to VDP memory ...30

VSBR ..31
Read single byte from VDP ..31

VSBW ...32
Write single byte to VDP ...32

VMBR ...33
Read multiple bytes from VDP ...33

VMBW ..34
Write multiple bytes to VDP ..34

VWTR ...35
Write to VDP register ...35

LVDPSH ...36
Load VDP shadow registers in RAM with video mode table ...36

WVDPSH..38
Write VDP shadow registers from RAM to VDP write-only registers..................................38

VDPADR ..39
Calculate VDP table start address...39

VIDOFF ..40
Disable screen display...40

VIDON ..41
Enable screen display ...41

XY2OF ..42
Calculate screen offset of X/Y character position..42

5 Spectra 0.1.5 – August 2009

VDP Sprites... 43

What I need to know...44
Copy of Sprite Attribute Table in RAM (Shadow SAT) ...44

PUTSAT ...46
Write shadow SAT (Sprite Attribute Table) from RAM to VDP memory46

SPRORD ..48
Initialize sprite order table to default sprite order 0..31...48

S8X8 ...49
Sprites with 8 x 8 pattern...49

S16X16 ...50
Sprites with 16 x 16 pattern ..50

SMAG1X ..51
Sprite magnification 1X ...51

SMAG2X ..52
Sprite magnification 2X ...52

SPRITE...53
Create new sprite ...53

VDP Tiles & Patterns .. 55

FILLSCR ..56
Fill screen with character ..56

FIBOX ...57
Fill rectangular area with character ...57

FIBOXX ..58
Fill rectangular area with character (register variant) ...58

PUTTX ..59
Put length-byte prefixed string on screen ...59

MIRRV ..60
Mirror tile/sprite patterns in RAM memory buffer around vertical axis60

Sound & Speech ... 61

EPSGMD ..62
Setup memory for playing EPSGMOD tune ...62

6 Spectra 0.1.5 – August 2009

Timers ... 64

What I need to know...65
Timer table ...65
Timer slot format ..65
Highest slot in use ...66
Equates for accessing timer slots ...66

MKSLOT ..67
Allocate specified timer slot ..67

TMGR ...68
Timer Manager – the Spectra task scheduler ..68

KBSCAN ..71
Scan the virtual TI-99/4A keyboard ...71

Appendix ... 75

Overview video mode tables..76

7 Spectra 0.1.5 – August 2009

Introduction

8 Spectra 0.1.5 – August 2009

What I need to know

Below you find some details regarding SPECTRA you definitely should know about before
you start programming your next favourite assembler game.

License

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or at your option any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.
If not, see <http://www.gnu.org/licenses/>.

License EPSGMOD player

Below I’ve included Tursi’s conditions dated July 14th 2009 for the usage of the EPSGMOD
tracker in SPECTRA:

You may use my version of the EPSGMod tracker, and any future versions I
release for the TI-99/4A and compatible machines, in your library, with
any license of your choice (including any version of the GPL), subject to
the following conditions:

1) You must get permission from KonTechs - you'll find his contact form on
the webpage I linked above. If you can't reach him let me know and I'll
forward a note on your behalf. You may include this acceptance on my part.

2) This does not license KonTech's own code, tracker, or any property not
created by myself personally or HarmlessLion LLC.

3) You keep a credit to both myself and KonTechs, with web links, in your
distribution both in documentation and source.

4) It is always free to download and use your library, and to distribute
software based on said library.

5) I have the right to cancel this permission for future releases of the
code, if I have to, by including a note in the distribution to that
effect.

I also got the permission from Martin Konrad (Kontechs) for the usage of Tursi’s EPSGMOD
tracker in SPECTRA. I received the below at July 16th 2009:

You have my permission for including Tursi’s EPSGMOD-player in your distribution, as
long as the distribution is free. But please inform me about further usages of the player.
I’ve sent a copy of this to Tursi, too.

9 Spectra 0.1.5 – August 2009

How it all started

The idea for the implementation of SPECTRA was born while I was working on Pitfall!, my
first homebrew game for the Texas Instruments TI-99/4A.

During that time I was studying the Colecovision disassembly of Pitfall! very closely and I
learned that the game called some subroutines that are stored in the console’s built-in ROM.
Doing some research in the internet revealed that the built-in Colecovision ROM contains a
BIOS; in this case a collection of game routines called OS7.

Thanks to the wonderful work of Daniel Bienvenu who documented most of these subroutines,
I was able to understand what they were actually for. Surprisingly the OS7 functions are not
used that often in homebrew Colecovision games, as they are reported to be slow.

Nonetheless, it inspired me to start working on a similar library for the TI-99/4A. I wanted an
open-source library that allows me to concentrate on the actual homebrew game without
having to start writing all subroutines from scratch over and over again.

I believe in free software and therefore it is my wish that SPECTRA is free and stays free in
the future. This is the reason I opted for distribution with a GPL license.

One size doesn’t fit all

SPECTRA is perhaps a bit different compared to already existing libraries. First of all I believe
in source code. As a matter of fact I don’t like libraries where I don’t have any access to the
source code. For sure I’m not pretending to understand all, but at least I want to have the
option to take a peek in the source code if something isn’t working the way I expect it.

So the concept behind SPECTRA is that instead of loading the full library, you just include the
subroutines that you need for getting the job done. It will save you some memory….

The library is targeted for cross-development on a PC. Even on an old PC assembly times are
so fast that I don’t see a big benefit in only using the already assembled object files. Actually
there are some big benefits on programming TMS9900 assembly games on a PC. Besides
the fact that you can always have your DEV environment with you, the biggest advantage is
that there are actually some cool emulators around, with at least one having a good debugger.
Last but not least I’m planning on writing a new TMS9900 cross-assembler especially for
writing games on the TI-99/4A supporting SPECTRA.

Compatibility

The source code in SPECTRA is compatible with Burrsofts’ Asm994A Assembler V3.008
This great cross-assembler for Windows is not part of the SPECTRA library, but can be
obtained directly at BurrSoft (http://www.99er.net/win994a.shtml).

The assembler is part of the Win994A emulator package and is considered freeware by the
author. For further details and verification please check the license conditions at the
mentioned BurrSoft page.

10 Spectra 0.1.5 – August 2009

Serviceable parts inside

The library has been tested to some extend, but comes without any warranties whatsoever.
There are still plenty of bugs inside and if you find any, let me know and I’ll try to fix them.
Better still, why don’t you fix them yourself and send me the updated version.

This not only counts for corrections: I would like to see SPECTRA become a community
project. So if you find this library useful, then why don’t you contribute by adding some new
functionality. We can then all benefit from it.

Visit the project home page at sourceforge (http://spectra99,sourceforge.net) for obtaining the
newest version. You can also report bugs there, discuss SPECTRA in the forum and bring in
some new ideas.

Graphics

Writing a homebrew game is not only about programming, a really big part has to do with
implementing graphics and sound effects. For creating graphics I have bundled SPECTRA
with a small utility called “Tile Studio Converter” that allows you to easily generate sprite and
character patterns of graphics created with Tile Studio.

Tile Studio (http://tilestudio.sourceforge.net) by Wiering Software is a very powerful open
source development utility for graphics of tile-based games.
This windows software is NOT included in SPECTRA, but is available for free via the
mentioned web link.

Sound

With the kind permission of both Tursi and Kontechs I have included a slightly modified
version of Tursi’s EPSGMOD (http://www.harmlesslion.com) for playing sophisticated sounds
and tunes on the TI-99/4A.

Basically the idea is that you create the tune using Kontechs Mod2PSG2
(http://mod2psg2.kontechs.de). Mod2PSG2 is a very powerful music tracker for the SN76489
sound chip that is used in the TI-99/4A, Colecovision, SEGA Master System, …
This windows software is NOT included in SPECTRA, but is available for free via the
mentioned web link.

See section “Sound & Speech” for details about the player and refer to the license section for
further details on the EPSGMOD usage conditions.

11 Spectra 0.1.5 – August 2009

Base

12 Spectra 0.1.5 – August 2009

BASE

What I need to know

Below you find some details you definitely should know about before you start programming
your next favourite assembler game.

Required files

The idea is that you only include those parts of SPECTRA that are useful in your game
implementation . However, there is one file called spectra_base.a99 that always must be
included in your source code. Reason is that it contains a header section that is used for
setting up memory and stack, has some basic equates, etc.
As such this file is a prerequisite for all of the subroutines in the library.

Below is the preferred order for including SPECTRA in your game source.

your_game_header.a99
your_game1.a99
your_game2.a99
….
spectra_base.a99 Always required
 spectra_memcpy.a99
 spectra_vdp.a99
 spectra_tiles.a99
 spectra_sprites.a99 Optional. Depends on your

game requirements
 spectra_timers.a99
 spectra_epsgmod.a99
 spectra_ctrl_virtkb.a99
your_game_end.a99

13 Spectra 0.1.5 – August 2009

Stack

All subroutines in SPECTRA are called via the branch-and-link (BL) instruction. When a
subroutine is called, it first pushes the registers it is about to change on the stack. On
subroutine exit they are then popped from the stack again by branching to the appropriate
utility routines (POPRGx or POPRXx).
This means that your registers will NOT be destroyed after calling any of the subroutines in
the library.

STACK equate Now for sure you already know that there is no hardware stack pointer

in a TMS9900 CPU. As a workaround the stack pointer is simulated by
using one of the 16 registers in the workspace.

In the default configuration SPECTRA uses register R8 as stack
pointer.

You can use another register for this purpose by changing the STACK
equate in spectra_base.a99 . However, keep in mind to store/restore
the correct values when fiddling with this register.

Be aware that the stack in SPECTRA grows from low memory towards
high memory.

STKBUF equate This equate must contain the address of the memory location that is at
the bottom of the stack. The value for this equate depends on the used
SPECTRA memory layout. When using the default configuration this
will be BLOCK 4 in scratch-pad memory.

By changing STKBUF in spectra_base.a99 you can decide where the
stack will be allocated in memory.

Make sure that on program start STKBUF points to a memory area that is properly initialized.
The stack size can grow to 64 bytes when using the default memory configuration.

14 Spectra 0.1.5 – August 2009

Memory layout

The memory layout used by SPECTRA is quite flexible. By default it uses all of scratchpad
memory. However you could reconfigure it in such way that none or only part of the
scratchpad memory is used. That could be helpful if you want to setup your own ISR hook.

Memory configuration is done in spectra_base.a99 and is basically divided in 5 blocks:

� Block 1: Contains the main workspace (R0-R15)
� Block 2: Contains all variables used by SPECTRA
� Block 3: Free for own use
� Block 4: Subroutine stack
� Block 5: Contains second workspace (R0-R15). Is normally not used but is available

as workspace for your BLWP subroutines. Keep in mind however that block 4 can
grow into block 5 so you will have to check subrout ine dependencies first when
using block 5 (*)

Note that blocks 1, 2 and 4 are crucial for SPECTRA to work properly.

SBLOC1
>8300

BLOCK 1

1st workspace

32 bytes

SBLOC2
>8300 + >20

 BLOCK 2

SPECTRA variables

32 bytes

SBLOC3
>8300 + >40

BLOCK 3

Free for own use
(128 bytes)

128 bytes

SBLOC4
>8300 + >C0

BLOCK 4
STACK

(can extend into block 5!)

32-64 bytes (*)

SBLOC5
>8300 + >D0

BLOCK 5

2nd workspace

32 bytes (*)

15 Spectra 0.1.5 – August 2009

Below you find the memory header section as included in the file spectra_base.a99

*//
* SPECTRA SCRATCH-PAD MEMORY USAGE
*//
SCRPAD EQU >8300 ; 256 bytes scratch-pad
SPCMEM EQU SCRPAD
SBLOC1 EQU SPCMEM ; \ Length 32 bytes
SBLOC2 EQU SPCMEM+>20 ; | Length 32 bytes
SBLOC3 EQU SPCMEM+>40 ; | Length 128 bytes -> FREE FOR OWN USE
SBLOC4 EQU SPCMEM+>C0 ; | Length 32 bytes \ -> SBLOC4 can extend
SBLOC5 EQU SPCMEM+>D0 ; / Length 32 bytes / to 64 bytes
*//
* BLOCK 1
*//
WSSPC1 EQU SPCMEM ; 32: SPECTRA workspace 1
*//
* BLOCK 2
*//
VIRTKB EQU SBLOC2 ; 2: Virtual keyboard
VDPREG EQU SBLOC2+2 ; 16: VDP shadow registers
VDPSTA EQU SBLOC2+18 ; 2: VDP shadow status register
VDPCOL EQU SBLOC2+20 ; 2: VDP screen columns
TCOUNT EQU SBLOC2+22 ; 2: Timer Tick counter
THIGH EQU SBLOC2+24 ; 2: Timer highest slot in use
OUTP0 EQU SBLOC2+26 ; 2: Return parameter 0
FUTU1 EQU SBLOC2+28 ; 2: RESERVED FOR FUTURE USE
FUTU2 EQU SBLOC2+30 ; 2: RESERVED FOR FUTURE USE
*//
* BLOCK 3
*//
FREE EQU SBLOC3 ; 128: Free for own use
*//
* BLOCK 4 - 5
*//
STKBUF EQU SBLOC4 ; 32: Stack (extends to 64!)
WSSPC2 EQU SBLOC5 ; 32: SPECTRA workspace 2

Variables in block 2

Please keep in mind that the SPECTRA memory layout is subject to change in future versions.
This particularly applies to the variables used in block 2 (SBLOC2).

EQUATE SIZE
(bytes)

Description / Used by …

VIRTKB 2 Virtual keyboard controller - Virtual keyboard status
spectra_ctrl_keyb.a99

VDPREG 16 VDP shadow registers (VDP#R0-R7)
spectra_vdp.a99, spectra_tiles.a99, spectra_sprites .a99

VDPSTA 2 VDP shadow status register
spectra_vdp.a99, spectra_tiles.a99, spectra_sprites .a99

VDPCOL 2 Number of columns in a row
spectra_vdp.a99, spectra_tiles.a99, spectra_sprites .a99

TCOUNT 2 Timer Manager - Internal tick counter
spectra_timers.a99

THIGH 2 Timer Manager - Highest timer slot in use
spectra_timers.a99

OUTP0 2 Subroutine output parameter 0
FUTU1 2 RESERVED FOR FUTURE USE
FUTU2 2 RESERVED FOR FUTURE USE

16 Spectra 0.1.5 – August 2009

BASE

POPRG(0-9)
Pop registers & return to caller

Main Category: RAM

File spectra_base.a99
Keywords RAM, LOW-LEVEL

Call format MYTEST B @POPRG2
Input -
Output -
Stack usage -

Description:

These routines pop the specified registers from the stack and then returns to the caller.
It expects that the return address (R11) is at the bottom.

Note that –by default- STACK is an equate for R8.
See the “what I need to know – Stack” section for d etails on stack usage.

Example:

Suppose you have a subroutine MYTEST defined that changes R0-R2 and you want to make
sure that when you call MYTEST upon return R0-R2 have their original values again.

MAIN LI R0,15
 LI R1,22
 LI R2,8
 BL @MYTEST ; Upon return R0=15, R1=22 and R2=8
 JMP $; Soft halt
MYTEST INCT STACK
 MOV R11,*STACK+ ; Push R11 (return address)
 MOV R0,*STACK+ ; Push R0
 MOV R1,*STACK+ ; Push R1
 MOV R2,*STACK ; Push R2
 LI R0,99
 MOV @MYVAR,R1
 CLR R2
 B @POPRG2 ; Pop R2,R1,R0,R11 from stack and return

Remarks:

You don’t want to do this if you are changing too many registers. In that case a LWPI will be
more effective.

17 Spectra 0.1.5 – August 2009

BASE

POPRX(0-9)
Pop registers & return to caller (R11 already set)

Main Category: RAM

File spectra_base.a99
Keywords RAM, LOW-LEVEL

Call format MYTEST B @POPRX2
Input -
Output -
Stack Usage -

Description:

These routines are similar to the POPRG(0-9) subroutines in that they pop the specified
registers from the stack and then returns to the caller.
This version expects that R11 is already set in the subroutine itself.
This is useful if passing parameters to the subroutine via DATA statements

Note that –by default- STACK is an equate for R8.
See the “what I need to know – Stack” section for d etails on stack usage.

Example:

Suppose you have a subroutine MYTEST defined that changes R0-R2 and you want to make
sure that when you call MYTEST upon return R0-R2 have their original values again.

MAIN LI R0,15
 LI R1,22
 LI R2,8
 BL @MYTEST
 DATA 4711 ; Upon return R0=15, R1=22 and R2=8
 JMP $; Soft halt
MYTEST INCT STACK
 MOV R0,*STACK+ ; Push R0
 MOV R1,*STACK+ ; Push R1
 MOV R2,*STACK ; Push R2
 MOV *R11+,R0 ; Get 4711 from caller and put in R0
 MOV @MYVAR,R1
 CLR R2
 B @POPRX2 ; Pop R2,R1,R0 from stack and return

Remarks:

You don’t want to do this if you are changing too many registers. In that case a LWPI will be
more effective.

18 Spectra 0.1.5 – August 2009

Memory / Copy

19 Spectra 0.1.5 – August 2009

MEMORY/COPY

FILMEM
Fill RAM memory range with byte

Main Category: RAM

File spectra_memcpy.a99
Keywords RAM, LOW-LEVEL, data-variant

Call format MYTEST BL @FILMEM

 DATA P0,P1,P2
Input P0 = Memory start address

P1 = Memory end address
P2 = LSB must contain byte to fill

Output -
Stack Usage 6 bytes (R0,R1,R2)

Description:

This routine is used to fill a memory range with the specified byte.

Example:

Fill memory >6000 until >7FFF with value >FF

MAIN BL @FILMEM
 DATA >6000,>7FFF,>00FF
 JMP $; Soft halt

Remarks:

-

20 Spectra 0.1.5 – August 2009

MEMORY/COPY

FILMEX
Fill RAM memory range with byte (register variant)

Main Category: RAM

File spectra_memcpy.a99
Keywords RAM, LOW-LEVEL, register-variant

Call format MYTEST BL @FILMEM
Input R0 = Memory start address

R1 = Memory end address
R2 = LSB must contain byte to fill

Output -
Stack Usage

Description:

This routine is used to fill a memory range with the specified byte.
Parameters are passed via registers.

Example:

Fill memory >6000 until >7FFF with value >FF

MAIN LI R0,>6000 ; Start
 LI R1,>7FFF ; End
 LI R2,>00FF
 BL @FILMEM
 JMP $; Soft halt

Remarks:

NOT YET IMPLEMENTED

21 Spectra 0.1.5 – August 2009

MEMORY/COPY

CPYM
Copy ROM/RAM memory range

Main Category: RAM

File spectra_memcpy.a99
Keywords RAM, LOW-LEVEL, data-variant

Call format MYTEST BL @CPYM

 DATA P0,P1,P2
Input P0 = Memory source address

P1 = Memory target address
P2 = Number of bytes to copy

Output -
Stack Usage 6 bytes (R0,R1,R2)

Description:

This routine is used to copy a ROM/RAM memory range to RAM.
Parameters are passed via registers.

Example:

Copy 500 bytes from high-memory >A000 to low-memory >8000

MAIN BL @CPYM
 DATA >A000,>8000,500
 JMP $; Soft halt

Remarks:

-

22 Spectra 0.1.5 – August 2009

MEMORY/COPY

CPYMX
Copy ROM/RAM memory range (register variant)

Main Category: RAM

File spectra_memcpy.a99
Keywords RAM, LOW-LEVEL, register-variant

Call format MYTEST BL @CPYMX
Input R0 = Memory source address

R1 = Memory target address
R2 = Number of bytes to copy

Output -
Stack Usage 8 bytes (R0,R1,R2,R11)

Description:

This routine is used to copy a ROM/RAM memory range to RAM.
Parameters are passed via registers.

Example:

Copy 500 bytes from high-memory >A000 to low-memory >8000

MAIN LI R0,>A000 ; Start RAM
 LI R1,>8000 ; Start VDP RAM
 LI R2,500
 BL @CPYM
 JMP $; Soft halt

Remarks:

-

23 Spectra 0.1.5 – August 2009

MEMORY/COPY

G2VDP
Copy GROM memory range to VDP memory

Main Category: GROM

File spectra_memcpy.a99
Keywords GROM, VDP, LOW-LEVEL, data-variant

Call format MYTEST BL @G2VDP

 DATA P0,P1,P2
Input P0 = GROM source address

P1 = VDP target address
P2 = Number of bytes to copy

Output -
Stack Usage 6 bytes (R0,R1,R2)

Description:

This routine is used to copy a memory range from GROM memory directly into VDP memory.

Example:

Copy 300 bytes from GROM >0200 to VDP >0000

MAIN BL @G2VDP
 DATA >0200,>0000,300
 JMP $; Soft halt

Remarks:

This subroutine overwrites the current GROM address.

24 Spectra 0.1.5 – August 2009

MEMORY/COPY

G2VDPX
Copy GROM memory range to VDP memory (register variant)

Main Category: GROM

File spectra_memcpy.a99
Keywords GROM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @G2VDPX
Input R0 = GROM source address

R1 = VDP target address
R2 = Number of bytes to copy

Output -
Stack usage 6 bytes (R0,R1,R2)

Description:

This routine is used to copy a memory range from GROM memory directly into VDP memory.
Parameters are passed via registers

Example:

Copy 300 bytes from GROM >0200 to VDP >0000

MAIN LI R0,>0200 ; GROM start
 CLR R1 ; VDP start
 LI R2,300
 BL @G2VDPX
 JMP $; Soft halt

Remarks:

This subroutine overwrites the current GROM address.

25 Spectra 0.1.5 – August 2009

MEMORY/COPY

G2MEM
Copy GROM memory range to RAM memory

Main Category: GROM

File spectra_memcpy.a99
Keywords GROM, RAM, LOW-LEVEL, data-variant

Call format MYTEST BL @G2MEM

 DATA P0,P1,P2
Input P0 = GROM source address

P1 = RAM target address
P2 = Number of bytes to copy

Output -
Stack usage 6 bytes (R0,R1,R2)

Description:

This routine is used to copy a memory range from GROM memory to RAM memory.

Example:

Copy 300 bytes from GROM >0200 to RAM >6000

MAIN BL @G2MEM
 DATA >0200,>6000,300
 JMP $; Soft halt

Remarks:

This subroutine overwrites the current GROM address.

26 Spectra 0.1.5 – August 2009

MEMORY/COPY

G2MEMX
Copy GROM memory range to RAM memory (register variant)

Main Category: GROM

File spectra_memcpy.a99
Keywords GROM, RAM, LOW-LEVEL, register-variant

Call format MYTEST BL @G2MEMX
Input R0 = GROM source address

R1 = RAM target address
R2 = Number of bytes to copy

Output -
Stack usage 6 bytes (R0,R1,R2)

Description:

This routine is used to copy a memory range from GROM memory to RAM memory.
Parameters are passed via registers.

Example:

Copy 300 bytes from GROM >0200 to RAM >6000

MAIN LI R0,>0200 ; GROM start
 LI R1,>6000 ; RAM start
 LI R2,300
 BL @G2MEMX
 JMP $; Soft halt

Remarks:

This subroutine overwrites the current GROM address.

27 Spectra 0.1.5 – August 2009

VDP
low-level

28 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

FVRAM
Fill VDP memory with byte

Main Category: VDP

File spectra_vdp.a99
Keywords VDP, LOW-LEVEL, data-variant

Call format MYTEST BL @FVRAM

 DATA P0,P1,P2
Input P0 = VDP start address

P1 = Byte to fill
P2 = Number of bytes to fill

Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

This routine fill the specified VDP range with the specified byte

Example:

Fill memory range VDP >0000 - >0300 with ASCII character 32.
This example clears the screen assuming that (VDP#2 PNT pointer is set to >00) and
graphics mode 1 is active.

MAIN BL @FVRAM
 DATA >0000,>20,768
 JMP $; Soft halt

Remarks:
-

29 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

FVRAMX
Fill VDP memory with byte (register variant)

Main Category: VDP

File spectra_vdp.a99
Keywords VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @FVRAMX
Input R0 = VDP start address

R1 = Byte to fill
R2 = Number of bytes to fill

Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

This routine fill the specified VDP range with the specified byte
Parameters are passed via registers.

Example:

Fill memory range VDP >0000 - >0300 with ASCII character 32.
This example clears the screen assuming that VDP#2 PNT register is set to >00 and graphics
mode 1 is active.

MAIN CLR R0 ; VDP start
 LI R1,>20 ; ASCII character 32
 LI R2,768 ; Bytes to fill
 BL @FVRAMX
 JMP $; Soft halt

Remarks:
-

30 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

PVRAM
Copy memory range to VDP memory

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, data-variant

Call format MYTEST BL @PVRAM

 DATA P0,P1,P2
Input P0 = VDP start address

P1 = RAM/ROM start address
P2 = Number of bytes to copy

Output -
Stack usage 6 bytes (R0,R1,R2)

Description:

This routine copies the specified memory range (RAM or ROM) to VDP memory.
Same functionality as the VMBW command.

Example:

Copy 15 sprites (16x16 size) from RAM address with label FGHT1 to VDP >0400
This example assumes that VDP#6 SPT (Sprite Pattern Table) register is set to >80 and
graphics mode 1 is active.

MAIN BL @PVRAM
 DATA >0400,FGHT1,15 * 32
 JMP $; Soft halt

Remarks:
There is no PVRAMX routine. You have to use VMBW for this.

31 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

VSBR
Read single byte from VDP

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @VSBR
Input R0 = VDP source address
Output R1 = MSB, the byte read from VDP
Stack usage -

Description:

This routine reads a single byte from VDP memory and stores it in
the Most-Significant Byte of register R1.

Parameters are passed via registers.

Example:

The below example reads the character displayed on row 0 column 0 from VDP screen table
assuming that VDP#2 PNT (Pattern Name Table) register is set to >00
After the routine is executed the Most-Significant Byte of register R1 contains the character
value.

MAIN CLR R0
 BL @VSBR ; Upon return MSB of R1 contains character value
 JMP $; Soft halt

Remarks:

Same functionality as in the Editor Assembler module.

32 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

VSBW
Write single byte to VDP

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @VSBW
Input R0 = VDP target address

R1 = MSB, the byte to write to VDP
Output -
Stack usage 4 bytes (R0,R11)

Description:

This routine writes a single byte to VDP memory.
The byte to write must be set as Most-Significant Byte of register R1.

Parameters are passed via registers.

Example:

The below example writes the character A (>41) to row 0 column 0 in VDP screen table
assuming that VDP#2 PNT (Pattern Name Table) register is set to >00

MAIN CLR R0 ; VDP start
 LI R1,>4100 ; Hex value >41 (=ASCII 65) in MSB
 BL @VSBW
 JMP $; Soft halt

Remarks:

Same functionality as in the Editor Assembler module.

33 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

VMBR
Read multiple bytes from VDP

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @VMBR
Input R0 = VDP source address

R1 = RAM target address
R2 = Number of bytes to read

Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

This routine reads the specified amount of bytes from VDP memory into RAM memory

Parameters are passed via registers.

Example:

The below example reads 10 characters from VDP screen table starting at row 0 column 0
assuming that VDP#2 PNT (Pattern Name Table) register is set to >00.
The bytes read will be stored in RAM memory in the memory buffer labelled MYBUFF.

MAIN CLR R0 ; VDP start
 LI R1,MYBUFF ; buffer in RAM
 LI R2,10 ; amount of bytes to read
 BL @VMBR
 JMP $; Soft halt
MYBUFF BSS 10 ; Buffer in RAM for storing 10 chars

Remarks:

Same functionality as in the Editor Assembler module.

34 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

VMBW
Write multiple bytes to VDP

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @VMBW
Input R0 = VDP target address

R1 = RAM/ROM source address
R2 = Number of bytes to write

Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

This routine writes the specified amount of bytes from RAM/ROM memory to VDP memory.

Parameters are passed via registers.

Example:

The below example writes 11 characters from RAM address with label MYTXT to VDP screen
table starting at row 0 column 0 assuming that VDP#2 PNT (Pattern Name Table) register is
set to >00.

MAIN CLR R0 ; VDP start
 LI R1,MYTXT ; Text in RAM/ROM
 LI R2,11 ; Number of bytes to write
 BL @VMBW
 JMP $; Soft halt
MYTXT TEXT “HELLO WORLD”

Remarks:

Same functionality as in the Editor Assembler module.

35 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

VWTR
Write to VDP register

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @VWTR
Input R0 = MSB is the VDP target register

 LSB is the value to write
Output -
Stack usage 4 bytes (R0,R11)

Description:

This routine writes the value in the least-significant byte of R0 to the VDP write-only register
addressed by the most-significant byte of R0.

Parameters are passed via registers.

Example:

The below example sets the SPT (Sprite Pattern Table) pointer in VDP#6 to address >3000.

MAIN LI R0,>0606 ; Note that >06 * >800 = >3000
 MOV R0,@VDPR6 ; Sync shadow register
 BL @VWTR
 JMP $; Soft halt

Remarks:

Same functionality as in the Editor Assembler module.

The SPECTRA library knows the concept of VDP shadow registers in RAM.
If you use VWTR you need to make sure the shadow registers are up-to-date as well.

For details check out functions LVDPSH (Load VDP shadow registers) and WVDPSH (Write
shadow registers to VDP).

36 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

LVDPSH
Load VDP shadow registers in RAM with video mode table

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @LVDPSH
Input R0 = Address of video mode table
Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

The SPECTRA library knows the concept of VDP shadow registers in RAM.
They are basically a copy of the write-only VDP registers.
This concept allows some more flexibility (e.g. read register value or set certain bits in the
copy).

The LVDPSH subroutine is used to load all shadow registers (@VDPREG0-@VDPREG7)
with the values of the specified video mode table.

Additionally it writes the amount of columns in a row (32, 40, 64) to the memory location
@VDPCOL and clears the shadow status register (@VDPSTA).

Note that LVDPSH itself does not dump the registers to the VDP. You have to use the
WVDPSH subroutine for that.

See section “APPENDIX – Overview video mode tables” for the default video mode tables
provided with SPECTRA.

See section “BASE – What I need to know” for details about SPECTRA memory layout.

37 Spectra 0.1.5 – August 2009

Example:

The below example sets up the VDP for dealing with graphics mode 1. The table VMODE1 is
already provided as part of the SPECTRA library (spectra_vdp.a99) and is included in this
example for reference purposes only.

MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers

 BL @WVDPSH ; Write shadow registers to VDP
 JMP $; Soft halt

VMODE1 DATA >0000,>01E2,>0200,>030E,>0401,>0506,>0680,>0700,32

* VDP#0 Control bits
* bit 6=0: M3 | Graphics 1 mode
* bit 7=0: Disable external VDP input
* VDP#1 Control bits
* bit 0=1: 16K selection
* bit 1=1: Enable display
* bit 2=1: Enable VDP interrupt
* bit 3=0: M1 \ Graphics 1 mode
* bit 4=0: M2 /
* bit 5=0: reserved
* bit 6=1: 16x16 sprites
* bit 7=0: Sprite magnification (1x)
* VDP#2 PNT (Pattern name table) at >0000 (>00 * >400)
* VDP#3 PCT (Pattern color table) at >0380 (>0E * >040)
* VDP#4 PDT (Pattern descriptor table) at >0800 (>01 * >800)
* VDP#5 SAT (sprite attribute list) at >0300 (>06 * >080)
* VDP#6 SPT (Sprite pattern table) at >0400 (>80 * >008)
* VDP#7 Set Background color to black
*
* 32 Columns in a row

Remarks:

-

38 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

WVDPSH
Write VDP shadow registers from RAM to VDP write-only registers

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @LVDPSH
Input R0 = Address of video mode table
Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

The SPECTRA library knows the concept of VDP shadow registers in RAM.
They are basically a copy of the write-only VDP registers. This concept allows some more
flexibility (e.g. read register value or set certain bits in the copy).

The WVDPSH subroutine itself is used to dump all shadow registers (@VDPREG0-
@VDPREG7) to the VDP write-only registers after they have been loaded from a video mode
table by the LVDPSH subroutine.

See section “APPENDIX – Overview video mode tables” for the default video mode tables
provided with SPECTRA.

See section “BASE – What I need to know” for details about SPECTRA memory layout.

Example:

The below example sets up the VDP for dealing with graphics mode 1.
The table VMODE1 is provided as part of the SPECTRA library.

MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers

 BL @WVDPSH ; Write shadow registers to VDP
 JMP $; Soft halt

VMODE1 DATA >0000,>01E2,>0200,>030E,>0401,>0506,>0680,>0700,32

Remarks:

-

39 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

VDPADR
Calculate VDP table start address

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @VDPADR

 DATA P0
Input P0 = Table identifier
Output @OUTP0 = VDP address of table
Stack usage 10 bytes (R0,R1,R2,R3,R11)

Description:

This subroutine calculates the start address of the specified table based on the value stored
in the corresponding VDP shadow register and returns it in the memory location OUTP0.

Please refer to subroutines LVDPSH and WVDPSH for details about what shadow registers
are.

Below are the valid values (equates) available for input register R0:

GETPNT (Pattern name table)
GETPCT (Pattern color table)
GETPDT (Pattern descriptor table)
GETSAT (Sprite attribute table)
GETSPT (Sprite pattern table)

Example:

The below example determines the start address of the Pattern descriptor table and then
copies 10 character patterns to that table, starting with character 0

MAIN BL @VDPADR ; Get start address of Pattern descriptor table
 DATA GETPDT ; Result is in @OUTP0
 MOV @OUTP0,R0
 LI R1,DIGITS
 LI R2,10*8 ; For displaying score
 BL @VMBW
 JMP $; Soft halt
DIGITS BYTE >00,>1C,>22,>63,>63,>63,>22,>1C ; 0
 BYTE >00,>18,>38,>18,>18,>18,>18,>7E ; 1
 ...

Remarks:

-

40 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

VIDOFF
Disable screen display

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @VIDOFF
Input -
Output -
Stack usage -

Description:

This subroutine sets bit 1 in VDP shadow register #1 to 0 which means that the VDP stops
displaying the screen image and opens a permanent window (interval) for CPU access.

Note that VIDOFF only sets the VDP shadow register, you still need to write it to the VDP
using the WVDPSH subroutine or a similar command.

You normally use this command at the start of a game if a new screen is to be displayed once
it is completely built.

Example:

The below example loads video mode1, disables the screen display and writes the shadow
registers to VDP. Then you have a permanent window for accessing VDP memory. Finally the
screen display is enabled again by VIDON and with writing all shadow registers to the VDP.

MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers
 BL @VIDOFF ; Disable screen display
 BL @WVDPSH ; Write shadow registers to VDP

 ; Your VDP commands here

 BL @VIDON ; Enable screen display
 BL @WVDPSH ; Write shadow registers to VDP
 JMP $; Soft halt

Remarks:

In performance crucial code, you can achieve the same by doing an inline:

 SZCB @BIT1,@VDPR1 ; bit 1=0 (Disable screen display)

41 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

VIDON
Enable screen display

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @VIDON
Input -
Output -
Stack usage -

Description:

This subroutine sets bit 1 in VDP shadow register #1 to 1 which means that the VDP starts
displaying the screen image again. This closes the permanent window (interval) that was
available for CPU access (see VIDOF subroutine)

Note that VIDON only sets the VDP shadow register, you still need to write it to the VDP using
the WVDPSH subroutine or a similar command.

You normally use this command at the start of a game if a new screen is to be displayed once
it is completely built.

Example:

The below example loads video mode1, disables the screen display and writes shadow
registers to VDP. Then you have an unlimited window for doing all your VDP stuff . Finally the
screen display is enabled again by VIDON and with writing all shadow registers to the VDP.

MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers
 BL @VIDOFF ; Disable screen display
 BL @WVDPSH ; Write shadow registers to VDP

 ; Your VDP commands here

 BL @VIDON ; Enable screen display
 BL @WVDPSH ; Write shadow registers to VDP
 JMP $; Soft halt

Remarks:

In performance crucial code, you can achieve the same by doing an inline:

 SOCB @BIT1,@VDPR1 ; bit 1=1 (Enable screen display)

42 Spectra 0.1.5 – August 2009

VDP LOW-LEVEL

XY2OF
Calculate screen offset of X/Y character position

Main Category: VDP

File spectra_vdp.a99
Keywords RAM, VDP, LOW-LEVEL, register-variant

Call format MYTEST BL @XY2OF
Input R0 = X Column (0-31, 0-39 for text-mode)

R1 = Y row (0-23)

or

R0 = MSB X Column (0-31, 0-39 for text-mode)
 LSB Y row (0-23)

Output @OUTP0 = Calculated screen offset
Stack usage 10 bytes (R0,R1,R2,R3,R11)

Description:

This subroutine calculates the VDP screen offset based on the provided XY coordinates by
using the formula offset = (ROWS * @VDPCOL + COL)

Note that the memory location @VDPCOL holds the numbers of columns in a row and is
normally set by the @LVDPSH subroutine.

Be aware that you must add the PNT base address to the offset yourself to get the proper
VDP target address.

Example:

The below example puts the text ‘HELLO WORLD’ at row 4, column 11 assuming that the
Pattern Name Table (PNT) is located at address >0000.

MAIN LI R0,>0A03 ; X=11 Y=4
 BL @XY2OF ; Result is in @OUTP0
 MOV @OUTP0,R0
 LI R1,HELLO
 LI R2,11 ; Text length
 BL @VMBW
 JMP $; Soft halt
HELLO TEXT ‘HELLO WORLD’

Remarks:

-

43 Spectra 0.1.5 – August 2009

VDP
Sprites

44 Spectra 0.1.5 – August 2009

VDP SPRITES – MEMORY SETUP

What I need to know
Below you find some information that may be helpful when using sprites in SPECTRA.

Copy of Sprite Attribute Table in RAM (Shadow SAT)

Before using the SPECTRA sprite functionality, you need to allocate 128 bytes of RAM.
This is required for maintaining a work copy of the Sprite Attribute Table (SAT).
Basically it allows you to easily do sprite manipulation in memory and then dump the SAT to
the VDP with a single call (PUTSAT).

Label RAMSAT
Size 128 bytes
Remarks Allocate in scratch-pad for optimal speed

For most sprite handling subroutines you can specify the address of the shadow SAT. For
easy sprite manipulation it is advised to define the shadow SAT with the label RAMSAT. It will
allow you to use the pre-defined sprite equates (See reference table).

It is advised to store the shadow SAT in scratch-pad RAM for getting optimal speed.

Example 1:

In the main program you define that SPECTRA will be using 128 bytes of scratch-pad
memory for maintaining a work copy of the Sprite Attribute Table.

RAMSAT EQU >8340 ; 128 bytes in scratch-pad RAM

Example 2:

If scratch-pad memory is not available for use, you would need to allocate it in normal
memory, e.g. high-memory

RAMSAT BSS 128 ; 128 bytes in RAM

45 Spectra 0.1.5 – August 2009

Remarks:

SPECTRA has a set of equates (SPR1-SPR32) that allows easy sprite manipulation in
memory.

SPR1 EQU RAMSAT ; Sprite 1
SPR2 EQU RAMSAT+4 ; Sprite 2
SPR3 EQU RAMSAT+8 ; Sprite 3
SPR4 EQU RAMSAT+12 ; Sprite 4
SPR5 EQU RAMSAT+16 ; Sprite 5
SPR6 EQU RAMSAT+20 ; Sprite 6
SPR7 EQU RAMSAT+24 ; Sprite 7
SPR8 EQU RAMSAT+28 ; Sprite 8
……
SPR29 EQU RAMSAT+112 ; Sprite 29
SPR30 EQU RAMSAT+116 ; Sprite 30
SPR31 EQU RAMSAT+120 ; Sprite 31
SPR32 EQU RAMSAT+124 ; Sprite 32

Format of Sprite Attribute Table Entry:

BYTE 0 BYTE 1 BYTE 2 BYTE 3

Vertical
position

Horizontal
position

Sprite name
pointer

Color & Early
clock flag

46 Spectra 0.1.5 – August 2009

VDP SPRITES

PUTSAT
Write shadow SAT (Sprite Attribute Table) from RAM to VDP memory

Main Category: VDP

File spectra_sprites.a99
Keywords RAM, VDP, LOW-LEVEL, SPRITE, register-variant

Call format MYTEST BL @PUTSAT
Input R0=VDP target address or >FFFF if address must be calculated

R1=Address of shadow SAT in RAM/ROM
R2=Address of sprite order table in RAM/ROM or >FFFF
 for default 0..31 order

Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

For increased speed and more easy sprite manipulation, SPECTRA can use one or more
shadow SAT tables in memory. The goal is to minimize the amount of read & writes from/to
the VDP by first doing the appropriate manipulation in memory and then doing a block write to
VDP.

You have to set R0 with the SAT address in VDP or you let the system calculate the address
by setting R0 to >FFFF. In that case the VDP SAT address is automatically calculated, based
on the value in VDP shadow register VDPR5.

SPECTRA expects you to define a shadow SAT (128 bytes) in RAM. It is advised that this
memory gets the label RAMSAT. So normally you would do a “LI R1,RAMSAT” first.

If R2 is set to >FFFF then the SAT will be written using the default sprite order 0..31
If you want to use a rotating custom sprite order table (32 bytes), e.g. for avoiding invisible 5th
sprite, you can do so by setting R2 to the address of that table.

Example:

The next example, assumes that you have a game cartridge with a SAT dumped in ROM at
address >6200. The example basically does the following steps:

� Setup graphics mode 1
� Load shadow SAT in RAM from SAT stored in a game ROM.
� Put sprite 5 at Y=100,X=30
� Dump shadow SAT to VDP using the default sprite order 0..31

47 Spectra 0.1.5 – August 2009

RAMSAT BSS 128
MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers
 BL @WVDPSH ; Dump it to the VDP
 BL @CPYM
 DATA >6200,RAMSAT,32*4 ; Put sprites from ROM in shadow SAT
 LI R0,>641E
 MOV R0,@SPR5 ; Set Y=100, X=30
 SETO R0 ; Let SPECTRA calculate VDP SAT address
 LI R1,RAMSAT
 SETO R1 ; >FFFF - No sprite order table
 BL @PUTSAT
 JMP $; Soft halt

Remarks:

There is no custom sprite order table provided with SPECTRA. You have to set it up yourself.

48 Spectra 0.1.5 – August 2009

VDP SPRITES

SPRORD
Initialize sprite order table to default sprite order 0..31

Main Category: VDP

File spectra_sprites.a99
Keywords RAM, VDP, SPRITE, register-variant

Call format MYTEST BL @SPRORD
Input R0=Address of sprite order table in RAM
Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

When writing the shadow SAT to VDP memory using the PUTSAT subroutine one can set the
order in which the entries are written. This allows you to for example have a rotating sprite list
for avoiding an invisible 5th sprite, however this comes with the cost of “flickering”.

There is no sprite order table provided with SPECTRA, you have to set it up yourself (32
bytes).

The SPRORD subroutine fills the sprite order table with the values 0..31 which in other words
is the default sprite order

Example:

The below example assumes that shadow SAT RAMSAT is already is setup and that it needs
to be written to VDP with default sprite order 0..31, but this time with possibility of having
rotating sprite order.

VDPSAT EQU >0300
MAIN LI R0,MYORDR
 BL @SPRORD ; Setup Sprite Order Table with values 0..31
 LI R0,VDPSAT
 LI R1,RAMSAT
 LI R2,MYORDR ; Custom Sprite Order Table
 BL @PUTSAT
 JMP $; Soft halt
MYORDR BSS 32 ; Custom sprite order

Remarks:

There is no custom sprite order table provided with SPECTRA. You have to set it up yourself .

49 Spectra 0.1.5 – August 2009

VDP SPRITES

S8X8
Sprites with 8 x 8 pattern

Main Category: VDP

File spectra_sprites.a99
Keywords RAM, VDP, SPRITE

Call format MYTEST BL @S8X8
Input -
Output -
Stack usage -

Description:

This subroutine resets bit 6 in VDP shadow register #1 to 0 which means that the sprite size
is 8 x 8. In other words you need 8 bytes for defining a sprite pattern.

Note that S8X8 only set the VDP shadow register, you still need to write it to the VDP using
the WVDPSH subroutine or a similar command.

Example:

The below example loads video mode1, set sprite size to 8x8 and sets all VDP read-only
registers.

MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers
 BL @8X8 ; Set sprite size 8x8
 BL @WVDPSH ; Write shadow registers to VDP
 JMP $; Soft halt

Remarks:

In performance crucial code, you can achieve the same by doing an inline:

 SZCB @PLS2+1,@VDPR1 ; bit 6=0 (Sprite size 8x8)
 BL @WVDPSH ; Write shadow registers to VDP

50 Spectra 0.1.5 – August 2009

VDP SPRITES

S16X16
Sprites with 16 x 16 pattern

Main Category: VDP

File spectra_sprites.a99
Keywords RAM, VDP, SPRITE

Call format MYTEST BL @S16X16
Input -
Output -
Stack usage -

Description:

This subroutine sets bit 6 in VDP shadow register #1 to 1 which means that the sprite size is
16 x 16. In other words you need 32 bytes for defining a sprite pattern.

Note that S16X16 only sets the VDP shadow register, you still need to write it to the VDP
using the WVDPSH subroutine or a similar command.

Example:

The below example loads video mode1, set sprite size to 16x16 and sets all VDP write-only
registers.

MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers
 BL @16X16 ; Set sprite size 16X16
 BL @WVDPSH ; Write shadow registers to VDP
 JMP $; Soft halt

Remarks:

In performance crucial code, you can achieve the same by only dumping VDP shadow
register 1 after doing an inline:

 SOCB @PLS2+1,@VDPR1 ; bit 6=1 (Sprite size 16x16)

51 Spectra 0.1.5 – August 2009

VDP SPRITES

SMAG1X
Sprite magnification 1X

Main Category: VDP

File spectra_sprites.a99
Keywords RAM, VDP, SPRITE

Call format MYTEST BL @SMAG1X
Input -
Output -
Stack usage -

Description:

This subroutine resets bit 7 in VDP shadow register #1 to 0 which means that the sprite
magnification is 1. In other words sprites are not magnified..

Note that SMAG1X only sets the VDP shadow register, you still need to write it to the VDP
using the WVDPSH subroutine or a similar command.

Example:

The below example loads video mode1, set sprite magnification to 1X and sets all VDP write-
only registers.

MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers
 BL @SMAG1X ; Set sprite magnification 1X
 BL @WVDPSH ; Write shadow registers to VDP
 JMP $; Soft halt

Remarks:

In performance crucial code, you can achieve the same by only dumping VDP shadow
register 1 after doing an inline:

 SZCB @BIT7,@VDPR1 ; bit 7=0 (Sprite magnification 1x)

52 Spectra 0.1.5 – August 2009

VDP SPRITES

SMAG2X
Sprite magnification 2X

Main Category: VDP

File spectra_sprites.a99
Keywords RAM, VDP, SPRITE

Call format MYTEST BL @SMAG2X
Input -
Output -
Stack usage -

Description:

This subroutine sets bit 7 in VDP shadow register #1 to 1 which means that the sprite
magnification is 2x. In other words sprites are twice the size they would normally be

Note that SMAG2X only sets the VDP shadow register, you still need to write it to the VDP
using the WVDPSH subroutine or a similar command.

Example:

The below example loads video mode1, set sprite magnification to 2X and sets all VDP write-
only registers.

MAIN LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers
 BL @SMAG2X ; Set sprite magnification 2X
 BL @WVDPSH ; Write shadow registers to VDP
 JMP $; Soft halt

Remarks:

In performance crucial code, you can achieve the same by only dumping VDP shadow
register 1 after doing an inline:

 SOCB @BIT7,@VDPR1 ; bit 7=1 (Sprite magnification 2x)

53 Spectra 0.1.5 – August 2009

VDP SPRITES

SPRITE
Create new sprite

Main Category: VDP

File spectra_sprites.a99
Keywords RAM, VDP, SPRITE

Call format MYTEST BL @SPRITE
Input R0=Pointer to sprite table entry in ROM/RAM

--
Format for sprite table entry:
DATA P0,P1,P2,P3,P4

P0=VDP target address for entry in VDP SAT or shadow SAT
P1=MSB is Y pixel position
 LSB is X pixel position
P2=MSB is sprite character code
 LSB is sprite colour
P3=ROM/RAM source address of sprite pattern data
P4=Address of subroutine to call via BL @statement.

Output -
Stack usage ????

Description:

This subroutine is used to create a new sprite.

MSB (Most Significant Byte) of P1 is the Y pixel position
LSB (Least Significant Byte) of P2 is the X pixel position

MSB of P2 is the sprite character code
LSB of P2 is the sprite colour.

P3 is a pointer to the memory location that holds the sprite pattern data.
Set P3 to >0000 (equate NULL) if no pattern data is to be defined.

You can set P4 with the address of the subroutine that initializes the control logic for this
particular sprite. Normally this subroutine is then used to do things like variable initialisation,
set sprite order & create a timer slot using (BL @MKSLOT) for handling the sprite animation
(movement, etc.).
Set P4 to >0000 (equate NULL) if no setup subroutine needs to be called.

54 Spectra 0.1.5 – August 2009

VDP SPRITES

Example:

Assuming that location SCORP1 holds the pattern data for a scorpion, the below example will
load the pattern data (character >A4) and put a white scorpion sprite on screen at Y position
>A2 and X position >80. It then calls the subroutine MYSUB using (BL @MYSUB)

MAIN LI R0,ABC ; Sprite table entry
 BL @SPRITE ; Put sprite on screen
 JMP $; Soft halt

MYSUB CLR @BLABLA ; Do something
 RET ; Exit

ABC DATA VDPSAT+40,>A280,>A40F,SCORP1,MYSUB

Remarks:

-

55 Spectra 0.1.5 – August 2009

VDP
Tiles & Patterns

56 Spectra 0.1.5 – August 2009

VDP TILES & PATTERNS

FILLSCR
Fill screen with character

Main Category: VDP

File spectra_tiles.a99
Keywords RAM, VDP, TILES, PATTERNS

Call format MYTEST BL @FILLSCR
Input R0=Character to fill
Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

Fill the screen with the character specified in R0.

The subroutine uses the VDPADR subroutine to determine the address of the PNT table.
Uses memory location @VDPCOL (columns in a row) which is set by the LVDPSH subroutine.
In other words, it also works in text mode, etc.

Example:

Fill the screen with letter A.

MAIN LI R0,65 ; ASCII of letter A
 BL @FILLSCR ; Fill screen
 JMP $; Soft halt

Remarks:

-

57 Spectra 0.1.5 – August 2009

VDP TILES & PATTERNS

FIBOX
Fill rectangular area with character

Main Category: VDP

File spectra_tiles.a99
Keywords RAM, VDP, TILES, PATTERNS

Call format MYTEST BL @FIBOX

 DATA P0,P1,P2,P3,P4
Input P0 = Upper left corner X

P1 = Upper left corner Y
P2 = Width
P3 = Height
P4 = Character to fill

Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

Fill the rectangular screen area (box) with the character specified in P4.

The subroutine uses the VDPADR subroutine to determine the address of the PNT table.
Uses memory location @VDPCOL (columns in a row) which is set by the LVDPSH subroutine.
In other words, it also works in text mode, etc.

A right screen-column boundary check is done to prevent that the box spans the right and left
part of the screen.

Example:

Fill a box with the letter ‘A’. The box is 15 columns wide and 4 rows long and is positioned at
row 8 column 10.

MAIN BL @FIBOX
 DATA 10,8,15,4,65 ; Fill box with letter A
 JMP $; Soft-halt

Remarks:

-

58 Spectra 0.1.5 – August 2009

VDP TILES & PATTERNS

FIBOXX
Fill rectangular area with character (register variant)

Main Category: VDP

File spectra_tiles.a99
Keywords RAM, VDP, TILES, PATTERNS

Call format MYTEST BL @FIBOXX
Input R0 = Upper left corner X

R1 = Upper left corner Y
R2 = Width
R3 = Height
R4 = Character to fill

Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

Fill the rectangular screen area (box) with the character specified in P4.
Parameters are passed via registers.

The subroutine uses the VDPADR subroutine to determine the address of the PNT table.
Uses memory location @VDPCOL (columns in a row) which is set by the LVDPSH subroutine.
In other words, it also works in text mode, etc.

A right screen-column boundary check is done to prevent that the box spans the right and left
part of the screen.

Example:

Fill a box with the letter ‘A’. The box is 15 columns wide and 4 rows long and is positioned at
row 8 column 10.

MAIN LI R0,10 ; left corner X
 LI R1,8 ; left corner Y
 LI R2,15 ; width
 LI R3,4 ; height
 LI R4,65 ; letter ‘A’
 BL @FIBOXX ; Fill box with letter A
 JMP $; Soft-halt

Remarks:

-

59 Spectra 0.1.5 – August 2009

VDP TILES & PATTERNS

PUTTX
Put length-byte prefixed string on screen

Main Category: VDP

File spectra_tiles.a99
Keywords RAM, VDP, TILES, PATTERNS

Call format MYTEST BL @PUTTX

 DATA P0,P1,P2
--
MYTEST BL @PUTTX
 DATA P0,P1

Input P0 = X column (0-31, 0-39, ...)
P1 = Y column (0-23)
P2 = Pointer to string
--
P0 = MSB (X column 0-31, 0-39, ...)
 LSB (Y column 0-23)
P1 = Pointer to string

Output -
Stack usage 8 bytes (R0,R1,R2,R3)

Description:

Display string specified in P2 on screen at column P0 and row P1.
Display string specified in P1 on screen at column (HI-byte P0) and row (LO-byte P0).

The first byte of the string to display must contai n the string length.

The subroutine uses the VDPADR subroutine so it knows where the PNT table is in VDP
memory. No need to add offset.

Example:

Assuming that the video mode table is already setup, this example displays the text
HELLO WORLD on row 12, column 10.

MAIN BL @PUTTX
 DATA >0A0C,TXT1 ; X=10 Y=12
 JMP $; Soft-halt
TXT1 BYTE 11
 TEXT ‘HELLO WORLD’

Remarks:

-

60 Spectra 0.1.5 – August 2009

VDP TILES & PATTERNS

MIRRV
Mirror tile/sprite patterns in RAM memory buffer around vertical axis

Main Category: VDP

File spectra_tiles.a99
Keywords RAM, VDP, TILES, PATTERNS

Call format MYTEST BL @MIRRV

 DATA P0,P1,P2
Input P0 = Pointer to pattern data in RAM

P1 = Number of bytes to mirror
P2 = ‘SWAP’ or ‘NOSWAP’

Output -
Stack usage 16 bytes (R0,R1,R2,R3,R4,R5,R6,R7)

Description:

Mirror tile/sprite patterns in RAM around the vertical axis.

P0 is a pointer to the memory location in RAM that is holding the actual pattern data.

P1 is the number of bytes that need to be mirrored.

P2 should be set to the pre-defined equates SWAP or NOSWAP.
SWAP means that the pattern sequence 0123 will be swapped to 2301.
This is useful for mirroring sprites having 16 x 16 pattern.

Note that this subroutine overwrites the original p atterns while mirroring .

Example:

Assuming that the video mode table is already setup, this example mirrors the sprite patterns
of a 16x16 space ship (SHIP) around the vertical axis. In this example the space ship is made
out of 3 overlapping sprites (one 16x16 sprite for each colour, 3 * 32 bytes = 96 bytes).
Finally the sprite pattern data gets dumped to the VDP by the @PVRAM subroutine.

MAIN BL @CPYM
 DATA SHIP,RAMBUF,96 ; Copy sprite patterns to RAM
 BL @MIRRV
 DATA RAMBUF,96,SWAP ; Mirror patterns around vertical axis
 BL @PVRAM
 DATA >0400,RAMBUF,96 ; Dump the pattern data to the VDP
 JMP $; Soft-halt
RAMBUF BSS 96 ; Work buffer

SHIP BYTE >00,>01,>01,>01,>01,>01,>00,>00 ; RED
 BYTE >00,>00,>08,>19,>3D,>01,>01,>00
 BYTE >00,>00,>00,>80,>80,>80,>C0,>C0
 BYTE >40,>40,>F0,>B8,>8C,>80,>00,>00
 ; GREEN
 ; WHITE

61 Spectra 0.1.5 – August 2009

Sound & Speech

62 Spectra 0.1.5 – August 2009

SOUND & SPEECH

EPSGMD
Setup memory for playing EPSGMOD tune

Main Category: SOUND

File spectra_epsgmod.a99
Keywords RAM, SOUND, EPSGMOD

Call format MYTEST BL @EPSGMD
Input R0 = Address of tune
Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

This subroutine is the interface to the built-in EPSGMOD player from Tursi
(http://www.harmlesslion.com). The version included in SPECTRA is slightly modified so that
the player runs as a task (PSGTCK) along with your game tasks. Other than that no
modifications were done.

Note that the actual player requires 128 bytes of RAM which are allocated in
spectra_epsgmod.a99

Basically the idea is that you create the tune using Kontechs Mod2PSG2
(http://mod2psg2.kontechs.de). Mod2PSG2 is a very powerful music tracker for the SN76489
sound chip that is used in the TI-99/4A, Colecovision, SEGA Master System, …
This windows software is NOT included in SPECTRA, but is available for free via the
mentioned web link.

After exporting the tune from Mod2PSG2, you can use the included PERL conversion utility
for generating the required BYTE source statements you then include in your source code.
PERL itself is a well-known open source script programming language that you can download
from http://www.perl.org

Don’t forget to start the PSGTCK controller that is responsible for playing the tune (see
example for details).

63 Spectra 0.1.5 – August 2009

Example:

The below example is taken from Time Pilot, my new homebrew game for the TI-99/4A.
It assumes that the byte data with label SND1 was already exported from the MOD2PSG2
Tracker and converted using the little PERL conversion utility.

MAIN
 MOV @PLS2,@THIGH ; Highest slot in use
 BL @MKSLOT
 DATA 0,2,KBSCAN ; Controller 0 - Keyboard
 BL @MKSLOT
 DATA 1,1,PSGTCK ; Controller 1 - Play PSG sound
 LI R0,TUNE
 BL @EPSGMD ; Setup memory for playing tune
 B @TMGR ; Start Task Scheduler

* Game introduction tune
********@*****@**
SND1 BYTE >0D,>00,>FF,>00,>08,>80,>00,>08,>80,>00,>08,>80
 BYTE >00,>08,>80,>00,>FF,>80,>FF,>00,>08,>80,>00,>08
 BYTE >FF,>80,>FF,>00,>08,>80,>00,>08,>80,>00,>08,>80

 ...

Conversion utility:

You can use the below PERL script for converting the exported tune from the Mod2PSG2
tracker into assembly BYTE statements:

open (FH,"<","your_file.epsgmodyour_file.epsgmodyour_file.epsgmodyour_file.epsgmod") || die("Couldn't open file!\n");
binmode(FH) || die("Don't know but something went wrong\n");

my $cnt = 0;
my $label = ' BYTE ';
my $data = '';
while (read(FH,$buf,2)) {
 if ($cnt % 6 == 0) {
 $data .= "\n$label";
 } else {
 $data .= ",";
 }
 my $val = sprintf("%04X", unpack("n",$buf));
 $data .= ">" . substr($val,0,2) . ",";
 $data .= ">" . substr($val,2,2);
 #printf ("%X",unpack("n",$buf));
 $cnt++;
};
print "RUNSIZ EQU ", $cnt, "\n";
print "RUN $data\n";
close(FH);

Remarks:

See the license section for the conditions on using the EPSGMOD player in your game.
Also big thanks to Tursi and Kontechs for their permission on including the player.

Note that an optimized version of the EPSGMOD player and a decent conversion utility is
planned for the next release of SPECTRA.

64 Spectra 0.1.5 – August 2009

Timers

65 Spectra 0.1.5 – August 2009

TIMERS

What I need to know
Below you find some information that may be helpful when creating tasks in SPECTRA.

Timer table

The timer table is used by the Timer Manager (TMGR) for executing subroutines at a
specified interval. It is the game programmers’ responsibility to allocate the amount of
required memory and to assign the label TIMER to it.

A timer table consists of 1 to X timer slots. See Timer slot format for further details.
Make sure to set the SPECTRA memory location @THIGH to the number of the highest slot
in use.

Label TIMER
Size Depends on amount of slots to use. 1 slot requires 8 bytes.
Remarks THIGH must contain the number of the highest slot in use

Example:

Allocate 20 timer slots in your main program.

TIMER BSS 160 ; Space for 20 timer slots
MAIN LI R0,19
 MOV R0,@THIGH ; Highest slot in use

Timer slot format

A timer slot consists of 8 bytes (4 words) and the initial setup is normally done by using the
MKSLOT subroutine. However manual manipulation is also easily possible and often useful
when changing certain slot aspects on-the-fly.

BYTE 0-1 BYTE 2-3 BYTE 4-5 BYTE 6-7
Interval
(Target tick
count)

Controller
(address of
routine to call)

Internal tick
counter

Private area
(available for
personal use)

Interval Determines at what interval the slot should be fired. This interval must be
specified in ticks per second.

On an American TI-99/4A console there are 60 ticks per second.
On an European TI-99/4A console there are 50 ticks per second.

66 Spectra 0.1.5 – August 2009

Controller This is the address of the subroutine that will be called by the Timer
Manager when the slot is fired.
In SPECTRA such subroutine is called a “controller”.
The Timer Manager calls the controller using the BL @xxx statement.

Internal counter Is an internal counter used by the timer manager to keep track about
when the slot should be fired. Do not modify.

Private Area This area is available for personal use. You would normally use this area

to store some flags related to your controller, as a pointer to a memory
area you allocate, etc.

Highest slot in use

The timer manager TMGR must know how many slots it needs to handle. Therefore the
SPECTRA library has a memory location @THIGH that must contain the number of the
highest slot in use.
See section “SPECTRA – memory layout” for the exact location of @THIGH.

Example:

Set highest slot in use to 4 (which is the 5th slot)

MAIN LI R0,4
 MOV R0,@THIGH ; Highest slot in use

Equates for accessing timer slots

For doing easy slot manipulation SPECTRA delivers a set of equates in spectra_timers.a99
for accessing 20 timer slots:

TSLOTx Byte 0-1 : Timer interval (byte 0-1) of specified slot
TSUBx Byte 2-3 : Controller address of specified slot
TPRVx Byte 6-7 : Private area of specified slot

* x=number between 0 and 19

Example:

Assuming you have a controller ZBLNK that runs in slot 10, the below example will use the
private area of that slot to store a game counter, cycling from 0-3.

ZBLNK INC @TPRV10 ; Increase counter (private variable slot 10)
 C @TPRV10,@PLS3
 JNE ZBLNKZ
 CLR @TPRV10 ; Reset counter (private variable slot 10)
ZBLNKZ RET

67 Spectra 0.1.5 – August 2009

TIMERS

MKSLOT
Allocate specified timer slot

Main Category: TIMERS

File spectra_timers.a99
Keywords RAM, TIMERS, ANIMATIONS

Call format MYTEST BL @MKSLOT

 DATA P0,P1,P2
Input P0 = Slot number

P1 = Run slot every P1 ticks
P2 = Controller (subroutine to call via BL @P2 when slot is fired)

Output -
Stack usage 8 bytes (R0,R1,R2,R11)

Description:

This subroutine is used for allocating the specified timer slot.

P0 is the slot number to use. The amount of available slots is determined by the size of the
slot table in RAM memory. See section “Timer layout” and the timer manager subroutine
TMGR for details.

P1 determines the interval at which the task scheduler should run the subroutine specified in
parameter P2. The value for the interval is defined in ticks per second.

On an American TI-99/4A console there are 60 ticks per second. On an European TI-99/4A
console there are 50 ticks per second.

P2 contains the address of the subroutine to call via BL @P2 when the slot is fired.
We call this type of subroutine a “controller”.

Note that the MKSLOT subroutine only allocates the timer, it does not process it.
Processing of all timer slots is done by the timer manager, so you have to make sure that it is
running. See subroutine TMGR for details.

Example:

See TMGR – Timer Manager

Remarks:

Spectra already provides some basic controllers.
See section “Default Controllers” for further details.

68 Spectra 0.1.5 – August 2009

TIMERS

TMGR
Timer Manager – the Spectra task scheduler

Main Category: TIMERS

File spectra_timers.a99
Keywords RAM, TIMERS, ANIMATIONS

Call format MAIN B @TMGR

Input -
Output -
Stack usage 0 bytes

Description:

This subroutine is used for running the timer manager, the task scheduler that is provided with
SPECTRA. It should be called after doing the program initialisation (setting up memory,
allocating timer slots, etc).

TMGR acts as the main loop of your program and requires that VDP interrupts are disabled,
so it first does a “LIMI 0” . The subroutine then basically synchronizes with the VDP by
continuously checking the interrupt flag (BIT0) of the VDP status register.

If the flag is switched on (VDP memory access window open), the subroutine will first save a
copy of the VDP status in the VDP status shadow register @VDPSTA and will then loop over
all defined slots.
For each slot it first updates the internal counter TCOUNT, compares with the target interval
defined in the slot and if it matches it calls the corresponding subroutine via BL @xxxx.

Make sure that you always properly initialize the T IMER table with >00 value. If you
have junk in the table it can happen that the Timer Manager interprets it as a slot that
needs to be fired and locks up.

You also need to set @THIGH to the highest slot currently in use.

See the MKSLOT subroutine for details on allocating a new timer slot.
See section “TIMERS – MEMORY SETUP” for details on the timer memory structure.

Be aware that an American TI-99/4A console (9918VDP) there are 60 ticks (interrupts) per
second. On an European TI-99/4A console (9928VDP) there are 50 ticks (interrupts) per
second.

69 Spectra 0.1.5 – August 2009

Example:

The below example uses a controller to fill the screen with a character and sets the border
colour. It starts with an interval of 1 second and then gets faster until it resets to an interval of
1 second again. Each time the controller is fired, it fills with the next character and next border
colour.

********@*****@*********************@**************************
 IDT 'TI'
 TITL 'TEST1'
 DEF SFIRST, SLAST, SLOAD
 AORG >A000 ; High-memory. Use >6000 for super-cart
SFIRST EQU $
SLOAD EQU $
TIMER EQU >8340 ; Allocate timer table in scratchpad memory

* Main program
********@*****@*********************@**************************
MAIN LWPI WSSPC1 ; Load main workspace
 LIMI 0
 LI STACK,STKBUF ; Setup simulated stack
 BL @FILMEM
 DATA >8320,>83FF,>00 ; Clear scratchpad memory (except workspace)
*--
* VDP setup
*--
 LI R0,VMODE1 ; "graphics mode 1"
 BL @LVDPSH ; Load shadow registers
 LI R0,>0700 ; Background "black"
 MOV R0,@VDPR7 ; Put in shadow register 7
 BL @VIDOFF ; Disable screen updates
 BL @WVDPSH ; Write shadow registers to VDP
 LI R0,32
 BL @FILSCR ; Clear screen
 BL @VIDON ; Enable screen updates again
 BL @WVDPSH ; Write shadow registers to VDP
*--
* Setup controller
*--
 CLR @THIGH ; Highest slot is 0
 BL @MKSLOT
 DATA 0,60,ZCYCLE
 MOV @CHAR,@TPRV0 ; Store in private area slot 0
 B @TMGR ; Start task scheduler

*--
* Controller: Cycle screen background
*--
ZCYCLE INCT STACK
 MOV R11,*STACK+
 MOV R0,*STACK+
 MOV R1,*STACK ; Just push/pop some registers for testing
*--
* Fill screen with character
*--
 INC @TPRV0 ; char = char + 1
 MOV @TPRV0,R0
 CI R0,143 ; Character with ASC
 JLE ZCYCLF
 MOV @CHAR,@TPRV0 ; Reset character in private area slot 0
ZCYCLF BL @FILSCR ; Fill screen with character
*--
* Cycle screen background
*--
 MOV @VDPR7,R0
 BL @VWTR ; Write shadow register
 INC R0 ; Increase color
 CI R0,>070F ; Last color reached ?
 JLE ZCYCLG
 LI R0,>0700 ; Reset color
ZCYCLG MOV R0,@VDPR7 ; Sync shadow register
 DECT @TSLT0 ; interval = interval - 2
 JNE ZCYCLH
 LI R0,60 ; Reset interval
 MOV R0,@TSLT0 ; Update interval
ZCYCLH B @POPRG1
CHAR DATA 32 ; White space - ASCII 32

70 Spectra 0.1.5 – August 2009

Default
Controllers

71 Spectra 0.1.5 – August 2009

DEFAULT CONTROLLERS

KBSCAN
Scan the virtual TI-99/4A keyboard

Main Category: TIMERS

File spectra_ctrl_keyb.a99
Keywords RAM, KEYBOARD, CONTROLLER

Call format MYTEST BL @MKSLOT

 DATA P0,P1,KBSCAN
Input P0 = Slot number

P1 = Repeat interval
Output @VIRTKB
Stack usage 8 bytes (R11,R0,R1,R2)

Description:

This controller implements a simple virtual TI-99/4A game keyboard. It basically scans the
keyboard and joystick 1 and maps the result as bit flags on a virtual keyboard mask.

The controller stores the resulting bit-flags in the memory word @VIRTKB.
See section SPECTRA memory layout for details on memory location.

Benefit is that your game controller does not specifically need to check both keyboard and
joystick. If you for example press ‘S’ on the keyboard, it reacts the same as if you pull joystick
1 to the left. They will both set the bit for the virtual key ‘KLEFT’ in @VIRTKB to 1.

Note that this controller does not support all keys, but does handle enough for supporting an
arcade game.
The controller itself also checks for FNCTN-QUIT and exits to the TI-99/4A title screen when
pressed.

The controller needs a 6 byte memory buffer for storing the keyboard/joystick column results.
Be default this is @RAMBUF

72 Spectra 0.1.5 – August 2009

Example:

The below example starts the keyboard controller and a game controller that checks for up
and down.

MAIN ...
 BL @MKSLOT
 DATA 0,2,KBSCAN ; Setup virtual-keyboard controller
 BL @MKSLOT
 DATA 1,2,GAME ; Setup your game controller
 MOV @PLS1,@THIGH ; Highest slot is 1
 B @TMGR ; Start task scheduler
*--
* Controller: Check game moves
*--
GAME INCT STACK
 MOV R0,*STACK
 MOV @VIRTKB,R0 ; Get virtual keyboard
 COC KUP,R0 ; ‘E’ pressed or joystick 1 moved up ?
 JNE GAME1 ; No, continue checking
 ... ; Yes, your stuff here
GAME1 COC @KDN,R0 ; ‘X’ pressed or joystick 1 moved down ?
 ...
 B @POPRG0 ; Exit

Overview @VIRTKB flags

Below are the bit flags currently used by the @VIRTKB memory word (see section
“SPECTRA – memory layout” for RAM location of this word.

BIT Description Meaning
0 Left 0=no 1=yes
1 Right 0=no 1=yes
2 Up 0=no 1=yes
3 Down 0=no 1=yes
4 Space / Fire / Q 0=no 1=yes
5 ALPHA LOCK down 0=no 1=yes
6 Pause 0=no 1=yes
7 -not used- 0=no 1=yes
8 REDO 0=no 1=yes
9 BACK 0=no 1=yes
10 QUIT 0=no 1=yes
11 -not used- 0=no 1=yes
12 -not used- 0=no 1=yes
13 -not-used- 0=no 1=yes
14 -not-used- 0=no 1=yes
15 -not-used- 0=no 1=yes

73 Spectra 0.1.5 – August 2009

Equates for controller

Below is an overview of the equates that are delivered with the KBSCAN controller.
They can be used for doing bit comparison against @VIRTKB.

Equate Virtual
key

Real
keyboard

Joystick 1 BIT in
@VIRTKB

Equate
value

KLFT left S Left 0 >8000
KRGT Right D Right 1 >4000
KUP Up E Up 2 >2000
KDN Down X Down 3 >1000
KUPLFT Up and

left
E+S Up and left 2 and 0 >A000

KUPRGHT Up and
right

E+D Up and right 2 and 1 >6000

KDNLFT Down
and left

X+S Down and left 3 and 0 >9000

KDNRGT Down
and right

X+D Down and
right

3 and 1 >5000

KFIRE Fire Q or
space

Fire 4 >800

KALPHA Alpha
lock down

Alpha
lock
down

- 5 >400

KPAUSE Pause P - 6 >200
KREDO REDO 8 - 8 >80
KBACK BACK 9 - 9 >40
KQUIT Quit FCTN + 0 - 10 >20

TI-99/4A keyboard 8x8 matrix

Below is an overview of the keyboard mapping that can be checked by reading the 6 byte
memory buffer @RAMBUF.

 Keyboard 8x8 matrix: If 0 then key is downKeyboard 8x8 matrix: If 0 then key is downKeyboard 8x8 matrix: If 0 then key is downKeyboard 8x8 matrix: If 0 then key is down

 COLUMN 0 1 2 3 4 5 6 7
 +---------------------------------+------+
 ROW 7 | = . , M N / JS1 JS2 | Fire |
 ROW 6 | SPACE L K J H ; JS1 JS2 | Left |
 ROW 5 | ENTER O I U Y P JS1 JS2 | Right|
 ROW 4 | 9 8 7 6 0 JS1 JS2 | Down |
 ROW 3 | FCTN 2 3 4 5 1 JS1 JS2 | Up |
 ROW 2 | SHIFT S D F G A +------|
 ROW 1 | CTRL W E R T Q |
 ROW 0 | X C V B Z |
 +--+

 See MG smart programmer 1986
 September/Page 15 and November/Page 6

74 Spectra 0.1.5 – August 2009

Remarks:

It is advised that the virtual keyboard runs as slot 0. You can then implement your game
controller as slot 1 and all game animations as separate controllers starting slot 2.
To pause the game you would just check @VIRTKB for KPAUSE. If it is pressed you then do
some preparation (e.g. mute sound chip), set @THIGH to slot 1 and all animations will stop.

See section “TIMERS – Memory setup” for details on @THIGH.

75 Spectra 0.1.5 – August 2009

Appendix

76 Spectra 0.1.5 – August 2009

Overview video mode tables

Below you find the list of default video mode tables provided in the file spectra_vdp.a99
See section “VDP LOW LEVEL ” for details on shadow register usage

Mode PNT

VDP#2
PCT
VDP#3

PDT
VDP#4

SAT
VDP#5

SPT
VDP#6

FG/BG
VDP#7

COL Description

VMODE1 >0000 >0380 >0800 >0300 >0400 -/Black 32 Graphics mode 1
VMODET >0000 >0380 >0800 >0300 >0400 White/

Black
40 Text mode

PNT = Pattern Name Table
PCT = Pattern Color Table
PDT = Pattern Descriptor Table
SAT = Sprite Attribute Table
SPT = Sprite Pattern Table

**
* ROM: VDP graphics mode 1 (values for shadow registers)
********@*****@*********************@**************************
* VDP#0 Control bits
* bit 6=0: M3 | Graphics 1 mode
* bit 7=0: Disable external VDP input
* VDP#1 Control bits
* bit 0=1: 16K selection
* bit 1=1: Enable display
* bit 2=1: Enable VDP interrupt
* bit 3=0: M1 \ Graphics 1 mode
* bit 4=0: M2 /
* bit 5=0: reserved
* bit 6=1: 16x16 sprites
* bit 7=0: Sprite magnification (1x)
*
* VDP#2 PNT (Pattern name table) at >0000 (>00 * >400)
* VDP#3 PCT (Pattern color table) at >0380 (>0E * >040)
* VDP#4 PDT (Pattern descriptor table) at >0800 (>01 * >800)
* VDP#5 SAT (sprite attribute list) at >0300 (>06 * >080)
* VDP#6 SPT (Sprite pattern table) at >0400 (>80 * >008)
* VDP#7 Set background color to black

VMODE1 DATA >0000,>01E2,>0200,>030E,>0401,>0506,>0680,>0700,32

* ROM: VDP text mode (values for shadow registers)
********@*****@*********************@**************************
* VDP#0 Control bits
* bit 6=0: M3 | Graphics 1 mode
* bit 7=0: Disable external VDP input
* VDP#1 Control bits
* bit 0=1: 16K selection
* bit 1=1: Enable display
* bit 2=1: Enable VDP interrupt
* bit 3=1: M1 \ TEXT MODE
* bit 4=0: M2 /
* bit 5=0: reserved
* bit 6=1: 16x16 sprites
* bit 7=0: Sprite magnification (1x)
*
* VDP#2 PNT (Pattern name table) at >0000 (>00 * >400)
* VDP#3 PCT (Pattern color table) at >0380 (>0E * >040)
* VDP#4 PDT (Pattern descriptor table) at >0800 (>01 * >800)
* VDP#5 SAT (sprite attribute list) at >0300 (>06 * >080)
* VDP#6 SPT (Sprite pattern table) at >0400 (>80 * >008)
* VDP#7 Set foreground color to white/Background color to black

VMODET DATA >0000,>01F2,>0200,>030E,>0401,>0506,>0680,>07F0,40

